Monday, July 29, 2013

New Whipray Species Identified by Its DNA

July 29, 2013 — Biologists have analysed tissue samples of 115 spotted whiprays of the Himantura genus, collected in various parts of the Indio-Pacific region. By means of genetic markers -- as opposed to morphological criteria only -- the scientists were able to describe these leopard-skin whiprays in detail and demonstrate that they are isolated from each other in terms of reproduction. They have also discovered a new species that they call Himantura tutul, which belongs to a genetic line that is totally distinct from the three other species that are known in the same group:H. leoparda, H. uarnak and H. undulata. They frequent the same costal habitats but occupy different ecological niches.


Biologists have discovered a new species of whipray that they call Himantura tutul, which belongs to a genetic line that is totally distinct from the three other species that are known in the same group: H. leoparda, H. uarnak and H. undulata. They frequent the same costal habitats but occupy different ecological niches. (Credit: © IRD / P. Laboute)

Distinguish in order to protect
These studies should help to assess the state of these whipray populations and improve their conservation. Knowing the biological characteristics of each species will for instance help to redefine a minimum size for fishing purposes to avoid the catching of juveniles that belong to the larger species. Determining their geographical distribution and habitats will also make it possible to protect the breeding and nursery habitats of each species.
Economical and ecological interest
Ocellated whiprays can grow over 1.50 metres wide. These large animals start breeding fairly late, at the age of 5 or 10 years, and only in small numbers. Their populations are therefore very vulnerable. Fished for food and especially for their skin that is sold to tanneries in South-East Asia, they are threatened almost throughout the tropical Indo-West Pacific. Their overfishing will in time jeopardise a whole segment of the economy in Indonesia, which is the largest shark and whipray exploiter with 30% of all catches worldwide. In less than twenty years, the amount fished in the Java Sea has been divided by ten! As high-level predators, whiprays also play an important role in regulating ecosystems. Their extinction will threaten the functioning of coastal marine environments.
The International Union for Conservation of Nature (IUCN) estimates that 36% of the 650 ray species known in the world are at risk of becoming extinct, including leopard whiprays that are classified as "vulnerable." A better identification of these singular animals is the first vital step towards their conservation.
Did you know?
Ocellated whiprays have one or two venom glands at the base of their tail to protect them against their natural predators, namely sharks and killer whales. Their sting is painful and potentially infectious, with serious consequences if not treated correctly.

ScienceDaily: Your source for the latest research news 
and science breakthroughs -- updated daily

Cockatoos Know What Is Going On Behind Barriers

July 29, 2013 — How do you know that the cookies are still there even though they have been placed out of your sight into the drawer? How do you know when and where a car that has driven into a tunnel will reappear? The ability to represent and to track the trajectory of objects, which are temporally out of sight, is highly important in many aspects but is also cognitively demanding. Alice Auersperg and her team from the University of Vienna and Oxford show that "object permanence" abilities in a cockatoo rivals that of apes and four-year-old humans.



The researchers published their findings in the journal Journal of Comparative Psychology.
For investigating spatial memory and tracking in animals and human infants a number of setups have been habitually used. These can roughly be subdivided depending on what is being moved: a desired object (food reward), the hiding places for this object or the test animal itself: In the original invisible displacement tasks, designed by French psychologist Jean Piaget in the 50s, the reward is moved underneath a small cup behind one or more bigger screens and its contents is shown in between visits: if the cup is empty we know that the reward must be behind the last screen visited. Humans solve this task after about two years of age, whereas in primates only the great apes show convincing results.
Likely to be even more challenging in terms of attention, are "Transposition" tasks: the reward is hidden underneath one of several equal cups, which are interchanged one or more times. Human children struggle with this task type more than with the previous and do not solve it reliably before the age of three to four years whereas adult apes solve it but have more trouble with double than single swaps.
In "Rotation" tasks several equal cups, one bearing a reward are aligned in parallel on a rotatable platform, which is rotated at different angles. "Translocation" tasks are similar except that the cups are not rotated but the test animal is carried around the arrangement and released at different angles to the cup alignment. Children find Translocation tasks easier than Rotation tasks and solve them at two to three years of age.
A team of international Scientists tested eight Goffin cockatoos (Cacatua goffini), a conspicuously inquisitive and playful species on visible as well as invisible Piagetian object displacements and derivations of spatial transposition, rotation and translocation tasks. 


Birgit Szabo, one of the experimenters from the University of Vienna, says: "The majority of our eight birds readily and spontaneously solved Transposition, Rotation and Translocation tasks whereas only two out of eight choose immediately and reliably the correct location in the original Piagetian invisible displacement task in which a smaller cup is visiting two of three bigger screens."

Alice Auersperg, the manager of the Goffin Lab who was also one of the experimenters, explains: "Interestingly and just opposite to human toddlers our cockatoos had more problems solving the Piagetian invisible displacements than the transposition task with which children struggle until the age of four. Transpositions are highly demanding in terms of attention since two occluding objects are moved simultaneously. Nevertheless, in contrast to apes, which find single swaps easier than double the cockatoos perform equally in both conditions."
Similarly, Goffins had little complications with Rotations and Translocation tasks and some of them solved them at four different angles. Again, in contrast to children, which find Translocations easier than Rotations, the cockatoos showed no significant differences between the two tasks. 


Auguste von Bayern from the University of Oxford adds: " We assume that the ability to fly and prey upon or being preyed upon from the air is likely to require pronounced spatial rotation abilities and may be a candidate trait influencing the animals' performance in rotation and translocation tasks."
Thomas Bugnayer from the University of Vienna concludes: "Finding that Goffins solve transposition, rotation and translocation tasks, which are likely to pose a large cognitive load on working memory, was surprising and calls for more comparative data in order to better understand the relevance of such accurate tracking abilities in terms of ecology and sociality."

 ScienceDaily: Your source for the latest research news 
and science breakthroughs -- updated daily

Borneo's Orangutans Are Coming Down from the Trees; Behavior May Show Adaptation to Habitat Change

July 29, 2013 — Orangutans might be the king of the swingers, but primatologists in Borneo have found that the great apes spend a surprising amount of time walking on the ground. The research, published in theAmerican Journal of Primatology found that it is common for orangutans to come down from the trees to forage or to travel, a discovery which may have implications for conservation efforts.



An expedition led by Brent Loken from Simon Fraser University and Dr. Stephanie Spehar from the University of Wisconsin Oshkosh, travelled to the East Kalimantan region of Borneo. The region's Wehea Forest is a known biodiversity hotspot for primates, including the Bornean orangutan subspecies, Pongo pygmaeus morio, the least studied of orangutan subspecies.
"Orangutans are elusive and one reason why recorded evidence of orangutans on the ground is so rare is that the presence of observers inhibits this behaviour," said Loken. "However, with camera traps we are offered a behind the scenes glimpse at orangutan behaviour."
The team positioned ground-based cameras across a 38-square-kilometre region of the forest and succeeded in capturing the first evidence of orangutans regularly coming down from the trees. The amount of time orangutans spent on the forest floor was found to be comparable to the ground-dwelling pig-tailed macaque, Macaca nemestrina, which is equally abundant in Wehea Forest. Over 8-months orangutans were photographed 110 times, while the macaques were photographed 113 times.
The reason orangutans come down from the trees remains a mystery. However, while the absence of large predators may make it safer to walk on the forest floor, a more pressing influence is the rapid and unprecedented loss of Borneo's orangutan habitat.
"Borneo is a network of timber plantations, agro-forestry areas and mines, with patches of natural forest," said Loken. "The transformation of the landscape could be forcing orangutans to change their habitat and their behaviour."
This research helps to reveal how orangutans can adapt to their changing landscape; however, this does not suggest they can just walk to new territory if their habitat is destroyed. The orangutan subspecies P. p. morio may be adapted to life in more resource scarce forests, having evolved larger jaws which allow them to consume more tree bark and less fruit but they are still dependent on natural forests for their long term survival.
"While we're learning that orangutans may be more behaviourally flexible than we thought and that some populations may frequently come to the ground to travel, they still need forests to survive," said Dr. Spehar. "Even in forest plantation landscapes they rely heavily on patches of natural forest for food resources and nesting sites."
Wehea Forest is one of the only places in Borneo where ten primates species, including five species found only in Borneo, overlap in their ranges. Since Wehea Forest is a biodiversity hotspot, paperwork have been submitted to legally change the status of Wehea Forest from "production forest" to "protected forest." However, given that 78% of wild orangutans live outside of protected areas, it is critical that all of Borneo's remaining forests are either protected or sustainably managed.
"We do not know how long this may take, but protecting Wehea Forest and Borneo's remaining forests is vital to the long term survival of the orangutans," concluded Loken. "Fortunately 60% of Wehea Forest falls under Indonesia's logging moratorium, which helps give legal protection to a large part of the forest for a few more years."

 ScienceDaily: Your source for the latest research news 
and science breakthroughs -- updated daily

Thursday, July 25, 2013

Mechanism Behind Squids' and Octopuses' Ability to Change Color Revealed

uly 25, 2013 — Color in living organisms can be formed two ways: pigmentation or anatomical structure. Structural colors arise from the physical interaction of light with biological nanostructures. A wide range of organisms possess this ability, but the biological mechanisms underlying the process have been poorly understood.




Two years ago, an interdisciplinary team from UC Santa Barbara discovered the mechanism by which a neurotransmitter dramatically changes color in the common market squid, Doryteuthis opalescens. That neurotransmitter, acetylcholine, sets in motion a cascade of events that culminate in the addition of phosphate groups to a family of unique proteins called reflectins. This process allows the proteins to condense, driving the animal's color-changing process.
Now the researchers have delved deeper to uncover the mechanism responsible for the dramatic changes in color used by such creatures as squids and octopuses. The findings -- published in the Proceedings of the National Academy of Science, in a paper by molecular biology graduate student and lead author Daniel DeMartini and co-authors Daniel V. Krogstad and Daniel E. Morse -- are featured in the current issue of The Scientist.
Structural colors rely exclusively on the density and shape of the material rather than its chemical properties. The latest research from the UCSB team shows that specialized cells in the squid skin called iridocytes contain deep pleats or invaginations of the cell membrane extending deep into the body of the cell. This creates layers or lamellae that operate as a tunable Bragg reflector. Bragg reflectors are named after the British father and son team who more than a century ago discovered how periodic structures reflect light in a very regular and predicable manner.
"We know cephalopods use their tunable iridescence for camouflage so that they can control their transparency or in some cases match the background," said co-author Daniel E. Morse, Wilcox Professor of Biotechnology in the Department of Molecular, Cellular and Developmental Biology and director of the Marine Biotechnology Center/Marine Science Institute at UCSB.
"They also use it to create confusing patterns that disrupt visual recognition by a predator and to coordinate interactions, especially mating, where they change from one appearance to another," he added. "Some of the cuttlefish, for example, can go from bright red, which means stay away, to zebra-striped, which is an invitation for mating."
The researchers created antibodies to bind specifically to the reflectin proteins, which revealed that the reflectins are located exclusively inside the lamellae formed by the folds in the cell membrane. They showed that the cascade of events culminating in the condensation of the reflectins causes the osmotic pressure inside the lamellae to change drastically due to the expulsion of water, which shrinks and dehydrates the lamellae and reduces their thickness and spacing. The movement of water was demonstrated directly using deuterium-labeled heavy water.
When the acetylcholine neurotransmitter is washed away and the cell can recover, the lamellae imbibe water, rehydrating and allowing them to swell to their original thickness. This reversible dehydration and rehydration, shrinking and swelling, changes the thickness and spacing, which, in turn, changes the wavelength of the light that's reflected, thus "tuning" the color change over the entire visible spectrum.
"This effect of the condensation on the reflectins simultaneously increases the refractive index inside the lamellae," explained Morse. "Initially, before the proteins are consolidated, the refractive index -- you can think of it as the density -- inside the lamellae and outside, which is really the outside water environment, is the same. There's no optical difference so there's no reflection. But when the proteins consolidate, this increases the refractive index so the contrast between the inside and outside suddenly increases, causing the stack of lamellae to become reflective, while at the same time they dehydrate and shrink, which causes color changes. The animal can control the extent to which this happens -- it can pick the color -- and it's also reversible. The precision of this tuning by regulating the nanoscale dimensions of the lamellae is amazing."
Another paper by the same team of researchers, published in Journal of the Royal Society Interface, with optical physicist Amitabh Ghoshal as the lead author, conducted a mathematical analysis of the color change and confirmed that the changes in refractive index perfectly correspond to the measurements made with live cells.
A third paper, in press at Journal of Experimental Biology, reports the team's discovery that female market squid show a set of stripes that can be brightly activated and may function during mating to allow the female to mimic the appearance of the male, thereby reducing the number of mating encounters and aggressive contacts from males. The most significant finding in this study is the discovery of a pair of stripes that switch from being completely transparent to bright white.
"This is the first time that switchable white cells based on the reflectin proteins have been discovered," Morse noted. "The facts that these cells are switchable by the neurotransmitter acetylcholine, that they contain some of the same reflectin proteins, and that the reflectins are induced to condense to increase the refractive index and trigger the change in reflectance all suggest that they operate by a molecular mechanism fundamentally related to that controlling the tunable color."
Could these findings one day have practical applications? "In telecommunications we're moving to more rapid communication carried by light," said Morse. "We already use optical cables and photonic switches in some of our telecommunications devices. The question is -- and it's a question at this point -- can we learn from these novel biophotonic mechanisms that have evolved over millions of years of natural selection new approaches to making tunable and switchable photonic materials to more efficiently encode, transmit, and decode information via light?"
In fact, the UCSB researchers are collaborating with Raytheon Vision Systems in Goleta to investigate applications of their discoveries in the development of tunable filters and switchable shutters for infrared cameras. Down the road, there may also be possible applications for synthetic camouflage.
Other members of the UCSB interdisciplinary research team involved in these discoveries include Elizabeth Eck, Erica Pandolfi, Aaron T. Weaver, and Mary Baum.
This research was supported by the Office of Naval Research via a Multidisciplinary University Research Initiative award and an Army Research Office grant through UCSB's Institute for Collaborative Biotechnologies. As well, use was made of UCSB Materials Research Laboratory central facilities and equipment, which are supported by a grant from the National Science Foundation.


ScienceDaily: Your source for the latest research news 
and science breakthroughs -- updated daily